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Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical
models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management
strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or
arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be
expected. We tested this by analysing co-authorship and co-citation networks using a database of 187 articles published from
1977 to 2006 concerning models of resistance evolution to all major classes of pesticides and drugs. These analyses identified
two main groups. One group, led by ecologists or agronomists, is interested in agricultural crop or stock pests and diseases. It
mainly uses a population genetics approach to model the evolution of resistance to insecticidal proteins, insecticides,
herbicides, antihelminthic drugs and miticides. By contrast, the other group, led by medical scientists, is interested in human
parasites and mostly uses epidemiological models to study the evolution of resistance to antibiotic and antiviral drugs. Our
analyses suggested that there is also a small scientific group focusing on resistance to antimalaria drugs, and which is only
poorly connected with the two larger groups. The analysis of cited references indicates that each of the two large communities
publishes its research in a different set of literature and has its own keystone references: citations with a large impact in one
group are almost never cited by the other. We fear the lack of exchange between the two communities might slow progress
concerning resistance evolution which is currently a major issue for society.
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INTRODUCTION
During the last century, the generalised and intensive use of

human-made chemical pesticides and drugs (including antimicro-

bial and antimalarial drugs, insecticides, herbicides, fungicides,

nematicides, and miticides) has allowed significant progress in

controlling major threats to human health and agriculture [1–3].

However, the resistance to drugs and pesticides in pathogenic

organisms, disease vectors and agricultural pests has generally

developed shortly after the introduction of new molecules often

resulting in significant control failures [1,4]. Antimicrobial drug

resistance is an ever-increasing threat for public health. Since

antibiotics came into general use in the 1950s, medical research

has had to confront the recurrent evolution of resistance to most

antibiotics used in hospitals against major microbial pathogens.

For instance, a few years after the introduction of penicillin in

1943, strains of Staphylococcus aureus resistant to this antibiotic were

detected in civilian hospitals [5]. Twenty years later, 80% of

hospital S. aureus isolates were declared penicillin resistant [6].

More generally, the emergence of multidrug resistant bacterial

strains has contributed to the continuous increase of hospital-

acquired infections [7]. During the 20th century, insecticide

resistance in disease vectors and agricultural pests has also

emerged as a problem. In 1986, Georghiou [1] reported the

existence of about 500 insect species resistant to at least one

insecticide, 100 resistant plant-pathogens and more than 45

herbicide-resistant weed species. The evolution of insecticide

resistance in mosquitoes is a remarkable instance of rapid human-

induced changes in pest populations. Dichloro-diphenyl-trichlor-

oethane (DDT) was first introduced to control mosquitoes in 1946,

and one year later the first resistant mosquito species, Aedes

tritaeniorhynchus and A. solicitans, were detected. Currently, more

than 100 mosquito species are known to be DDT resistant (cited

by Hemingway et al. [8]).

This situation would not be necessarily problematic if

pharmaceutical industries and agribusiness companies were able

to stay one step ahead of pathogenic organisms and agricultural

pests, i.e. to develop and market new products before resistance

causes significant control failures. However, the rate at which

resistance evolves in target organisms makes the development of

new pesticides and drugs increasingly costly and difficult [9–11].

In addition, cross resistance between chemicals belonging to the

same family often results in molecules becoming ineffective before

they are used. So, not only must the chemical product be novel but

its target must also be novel. Because the number of molecules that

can be developed is necessarily limited, the efficacy of existing

products should be protected for the long-term. In view of these

considerations, modelling the evolution of resistance became

a keystone approach in agricultural and medical research with the

aim of identifying the best strategies to avoid or at least delay the

development of resistance [3].

Models of resistance evolution (either mathematical models or

computer simulations) consider the evolutionary forces governing

the temporal dynamics of adaptive genes in populations subjected

to strong directional selection. These forces (selection, drift,
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mutation and migration, to point out the majors) have been clearly

identified [12] and are logically identical for virus, bacteria, fungi,

plants and arthropods facing drugs or pesticides. Therefore,

scientists modelling the evolution of resistance in different

biological organisms would be expected to work together and

interact, publish in the same scientific journals, quote the same

scientific references, use similar modelling approaches and,

ultimately, share the same basic management strategies to avoid

the development of resistance.

Our aim was to test whether this is the case. We analysed co-

authorship and co-citation networks using a database of 187

models of resistance evolution published from 1977 to 2006 (Table

S1). These network analyses describe the extent to which scientists

modelling resistance evolution collaborate and share their

knowledge (Figure 1). We used historical, methodological and

geographical criteria to interpret the structure of the scientific

community.

RESULTS

Database content
The bibliographic search in the CABs 1973–2006, Current

Contents 1998–2006 and Medline 1950–2006 provided a dataset

of 1,894 non redundant articles published in peer-reviewed

scientific journals, dealing with resistance to pesticides or drugs.

We removed all articles that did not deal with mathematical

description or computer simulation of the temporal evolution of

resistance. This resulted in a database containing 187 articles

written by 321 different authors and citing a total of 4,154

bibliographic references. This database covered the range of all

major drugs and pesticides: insecticidal proteins (39 articles),

chemical insecticides (30), antibiotic drugs (29), herbicides (18),

fungicides (15), antiviral drugs (14), antimalarial drugs (12),

antihelminth drugs (10) and miticides (3); in addition there were

17 articles (hereafter referred to as ‘unspecific articles’) describing

the evolution of resistance without reference to any specific class of

pesticides or drugs.

The 187 articles were published between 1977 and 2006. More

articles were published after than before 1995, mainly because of

a larger number dealing with the evolution of drug resistance in

bacteria and viruses. After 1995, publications concerning models of

the evolution of resistance to chemical insecticides and to fungicides

tended to be replaced by articles focusing on insecticidal proteins.

Analysis of the authorship network
Forty-nine of the 187 articles were written by scientists who were

not authors of any other article included in the database. These 49

articles were classified as ‘isolated’ articles and were not included

in the authorship network analysis. This analysis was therefore

based on 138 articles with 87 authors (necessarily authors of at

least two articles). The authorship network was fragmented into 28

components of various sizes: a large component including 45

articles and 25 authors (named group A1; Figure 2), a medium

component including 15 articles and 9 authors (group A2; Figure 2)

and 26 small components each including fewer than 6 articles and

5 authors (‘small groups’).

We investigated possible causes of the fragmentation of the

authorship network into collaborative groups by characterizing

each article of the database according to: the type of drug or

pesticide considered; the type of target organism considered; the

modelling approach used; the first author’s geographical location;

and the first author’s academic discipline (Table 1). We then tested

for statistical associations between these descriptive categories and

the observed collaborative grouping. The distributions of descrip-

tors in each category were differently associated within the groups

A1 and A2 (Fisher’s exact tests, p,1025 for each category).

Articles belonging to group A1 were predominantly written by

North-American biologists who only used a population genetics

Figure 1. A schematic representation of the network analysis described in this study. The middle layer represents the research articles (circles)
selected for the study. Upper and lower layers represent authors of the articles (triangles) and bibliographic references cited in the articles
(diamonds), respectively. Linking the three layers together gives rise to two bipartite networks. The architecture of the authorship network (upper
network) was analysed to assess the extent to which the scientists collaborated. The architecture of the citation network (lower network) was
analysed to quantify to which extent the knowledge circulates among them. In this example, two distinct collaborative groups (yellow, dotted lines)
establish their research from different sets of cited literature (blue, continuous lines). Authors having published once (j) and their corresponding
articles (i) were removed from the authorship network. Likewise references that were cited only once (j’) and the corresponding citing articles (i’) were
removed from the citation network. Articles i and i’ were considered to be articles ‘‘isolated’’ from the authorship and citation networks, respectively.
doi:10.1371/journal.pone.0001275.g001
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approach to model resistance evolution to insecticides or in-

secticidal proteins in farm pests or farm diseases. One third of

articles belonging to group A2 were written by European scientists

and two thirds by North-American scientists; two thirds of these

articles used epidemiological approaches to study the evolution of

resistance in human parasites to antibiotic or antiviral drugs. Not

surprisingly, more than two thirds of the authors were biologists,

and a substantial proportion of the authors worked in medical

institutes (Table 1). Both groups (A1 and A2) were too small for

a clustering algorithm to be used.

‘Small groups’ included a large range of articles. They addressed

all types of drugs and pesticides, and used both modelling

approaches: population genetics (49%) and epidemiology (24%).

More than 80% of the articles describing resistance to herbicides,

fungicides, and antihelminthic drugs belonged to these small

authorship networks (Table S2). The characteristics of isolated

articles were diverse (Table S2), and they were mostly studies on

insect farm pests and insect disease vectors; they used both

epidemiological and population genetics models.

Analysis of the citation network
A total of 4,154 references were cited by the 187 articles of the

database; 3,297 were cited only once and were not included in the

analysis. Five of the 187 articles of the database (further classified

as ‘isolated articles’; see Figure 1) did not contain any list of

references or did not share any reference with other articles of the

database. These five articles were removed from the analysis. The

citation network was hence composed of 182 articles and 857

citations. Unlike the authorship network, the citation network was

fully connected. The clustering algorithm developed by Girvan

and Newman [13] was used to investigate its structure: it organises

the network in such a way that groups of densely connected nodes

(here, articles and cited references) are separated from each other.

The first split formed a group of 138 articles and 631 cited

references (called C1; Figure 3) and a group of 44 articles and 226

cited references (called C2; Figure 3). The clustering into the

groups C1 and C2 was statistically validated by the multiresponse

permutation procedure: the citation dissimilarity between articles

of the database was lower within than between groups C1 and C2

(A = 0.010, p,0.001, Table S3). Conversely, the dissimilarity of

source articles among citations was statistically lower within than

between groups C1 and C2 (A = 0.013, p,0.001, Table S3).

When applied to the unipartite projection of the citation

network on articles (see material and methods for details on this

projection), the clustering algorithm produced two major groups

named U1 and U2; Table S4) which were strongly correlated with

the C1 and C2 groups, respectively. About 97% of the C1 articles

belonged to the U1 group, and about 93% of the articles in group

C2 belonged to the U2 group. Five articles of the C1 group were

classified in the U2 group, and all but one of them addressed

resistance to antimalarial drugs. This suggests that the antimalaria

articles were loosely associated with group C1.

We had included all types of references in the bipartite citation

network, so references shared by articles belonging to the same

citation group, whether C1 or C2, could be either theoretical

studies on the evolution of resistance or articles describing the

biology of target organisms. To circumvent the bias of common

grouping resulting from shared biological references, we applied

the clustering algorithm to the unipartite network: this network

links two articles of the database if one of them cited the other.

Since our database included only theoretical models, common

grouping could then only be due to shared theoretical references.

We found that this unipartite co-citation network also displayed

two major groups, named M1 and M2 (Table S5), which were, like

U1 and U2, strongly correlated with the C1 and C2 groups,

respectively. About 91% of the C1 articles belonged to the M1

group, and about 86% of the articles of the C2 group belonged to

the M2 group. Eleven articles of the C1 group were classified in

Figure 2. Largest components of the authorship network. Scientists (coloured triangles) are linked together through the articles (black circles) they
have co-authored. The figure was obtained using the Tulip software [41]
doi:10.1371/journal.pone.0001275.g002
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the M2 group; they included nine focusing on resistance to

antimalarial drugs. This confirmed that the antimalaria articles

were loosely associated with the C1 group.

The distributions of four of the five categories of descriptors

were different within the groups C1 and C2 (Fisher’s exact tests,

p,1025). The location of the first author was the only category for

which the distributions of the descriptors did not differ (at the 5%

risk level) between the groups C1 and C2 (Fisher’s exact test,

p = 0.078). Articles of group C2 were almost all devoted to the

evolution of resistance in human parasites: they mainly focused on

antibiotic and antiviral drugs (Table 1 and Figure 3). By contrast,

articles of group C1 were generally devoted to models of resistance

evolution in agricultural settings: they mainly focused on resistance

to antihelminthic drugs, fungicides, herbicides, insecticides, or

insecticidal proteins (Table 1 and Figure 3). The C1 cluster also

included the articles devoted to resistance to antimalarial drugs,

but, as indicated above, the association between these articles and

the other articles belonging to the group C1 was weak. Groups C1

and C2 were also differentiated by the type of modelling approach:

most of the articles of group C1 used population genetics models

whereas epidemiological models were dominant in group C2

(Table 1). The first author’s discipline also differed between the

two groups. Most first authors of C1 articles were biologists

whereas there were similar numbers of biologist and medical first

authors for C2 articles (Table 1). We confirmed that the ‘isolated

articles’ were distributed across the different categories (Table S6).

We further divided the whole network, by at each step splitting

the largest remaining group. These additional splits distinguished

seven groups within the C1 group. Consequently, the network

then had eight groups in total (seven C1 subgroups plus the C2

group). This clustering was statistically validated by the multi-

response permutation procedure (Table S7). The seven C1

subgroups were significantly different (Fisher’s exact test,

p,1025) with respect to the type of pesticide or drug they

addressed (Table S8). As expected from the results obtained in our

global analysis, the first group that split out from the C1 cluster

consisted mostly of articles focusing on resistance to antimalarial

drugs. The second group contained only articles focusing on

resistance to herbicides. The third and fourth groups were mostly

(87.5% and 90%) articles modelling resistance to fungicide and

antihelminthic drugs, respectively. The fifth group included all the

articles focusing on evolution of resistance in the western corn root

worm, Diabrotica virgifera virgifera, to Bt corn. Finally, 80% of the

articles belonging to the sixth and seventh subgroups were devoted

to insecticides and insecticidal proteins also included most of the

unspecific articles (Figure 3).

Relationships between citation and authorship

network groupings
Note that the A and C groupings described above were obtained

independently from each other. Cross-classification of the 187

articles between the authorship and citation groups indicated that

the two classifications were however not independent from each

other (Table 2, Fisher’s exact test, p,1025). All articles of the A1

authorship group were classified in the C1 citation group and all

except two [14,15] of the articles of the A2 authorship group

belonged to the C2 citation group. Moreover, five of the six

‘isolated articles’ of the citation network were also scored as

isolated in the authorship classification (Table 2). The classification

of the articles by May and Hassel [14] and Koella and Antia [15]

in the C1 group is consistent with our characterization of this

group (Table 1) as these articles dealt with pesticide resistance in

agricultural settings and resistance to antimalaria drugs, re-

spectively. They were attributed to the A2 authorship because

R. M. May is also co-author of articles dealing with HIV resistance

to antiviral drugs [16,17], and R. Antia is also co-author of articles

dealing with antibiotic resistance [18,19]. Because the classifica-

tions based on the citation and the authorship networks were very

similar and because author groups A1 and A2 were apparently

unconnected, we analysed the information flow between groups

using the citation network only.

Information flow between citation groups
Overall, 48 of the 857 references were quoted both by articles

belonging to the C1 group and articles belonging to the C2 group

(Table S9). Thus, articles from group C1 and group C2 shared less

than 5.6% of the references (after exclusion of all the references

that were cited only once). The citation network analysis assigned

39.5% (19 articles) of the 48 shared references to group C1 and

60.5% (29 articles) to group C2; these shared references made up

3% of the total number of C1 citations and 12.8% of the total

number of C2 citations, indicating that articles of the group C1 are

more prone to quote C2 references that the reverse. The 48 article

cited mostly reported models of the evolution of resistance to

fungicides (30%), to antibiotics (27%) and general models of

Table 1. Within-group distribution of articles for the different
descriptive categories.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Category Descriptor Percentage of Articles

A Groups C Groups

A1 A2 C1 C2

Type of Drug or Pesticide Antibiotic Drug 0.0 66.7 0.0 61.4

Antihelminthic Drug 0.0 0.0 7.2 0.0

Antimalarial Drug 0.0 6.7 8.7 0.0

Antiviral Drug 0.0 20.0 0.0 31.8

Fungicide 0.0 0.0 10.1 2.3

Herbicide 0.0 0.0 13.0 0.0

Insecticidal Protein 62.2 0.0 27.5 0.0

Insecticide 26.7 0.0 21.0 0.0

Miticide 2.2 0.0 1.4 0.0

Unspecific 8.9 6.7 10.9 4.5

Type of Target Organism Farm Pest or Disease 100.0 6.7 83.3 2.3

Human Parasite 0.0 93.3 11.6 93.2

Unspecific 0.0 0.0 5.1 4.5

Modelling Approach Epidemiology 0.0 66.7 6.5 72.7

Population Genetics 100.0 13.3 76.1 4.5

Other 0.0 20.0 17.4 22.7

First Author’s Location Asia 0.0 0.0 8.7 2.3

Europe 2.2 33.3 28.3 38.6

North America 95.6 66.7 52.2 56.8

Oceania 2.2 0.0 9.4 0.0

South America 0.0 0.0 1.4 2.3

First Author’s Discipline Biology 95.6 73.3 86.2 36.4

Economy 0.0 0.0 0.0 2.3

Mathematics 4.4 6.7 7.2 13.6

Medicine 0.0 20.0 6.5 47.7

For all categories, the distributions are significantly heterogeneous between
groups A1 and A2, and between groups C1 and C2 (Fisher exact test, p,1025 in
both cases).
doi:10.1371/journal.pone.0001275.t001..
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theoretical population biology and genetics (16%). To assess the

extent of information flow between C1 and C2 groups, we compared

the five most frequently quoted references and journals of each

group. The results were particularly striking: none of the five most

cited references and journals of one group appeared in the top five of

the other group (Table 3). Indeed, none of the most frequently

quoted references of group C1 was quoted by group C2. Even the

keystone article by Comins [20], which was quoted 35 times by

group C1, did not appear among the references of the other group.

By contrast, the most frequently quoted references of group C2 were

in some cases quoted by group C1. For instance, the keystone book

by Anderson and May [21], which was cited 18 times by group C2,

was also cited four times by group C1 (Table 3). The five top journals

cited by group C1 were mainly specialized in entomology. The only

journal that was also cited by group C2 was Phytopathology. The five

top journals cited in the group C2 included two specialized medical

journals, that were almost never cited by articles of the C1 group,

and three generalist journals–Science, Nature and PNAS–that were

frequently cited by articles of the C1 group (Table 3)

An alternative method for assessing the information flow

between citation groups is to examine the articles of one group

that cite references assigned to the other group. Only 28 of the

articles of the database did so. The 28 articles included half of all

articles in our database dealing with antimalarial drug resistance,

33% of the articles dealing with fungicide resistance evolution and

29% of the articles classified as ‘unspecified’ (Table S10). Among

the 28 articles: (i) 21 articles, belonging to the group C1, cited at

least one reference assigned to the group C2. One of these articles,

that by Koella and Antia [15] cited the largest number of

references belonging to the C2 group (6 citations). It is an

epidemiological model describing the evolution of drug resistance

in malaria parasite populations. Note that this article was one of

the two C1 articles classified in the A2 authorship group because

of R. Antia’s interest in antibiotic resistance, which indicates that

collaboration between scientists with different interests leads to

research based on a wider literature, (ii) seven articles, belonging to

the group C2, cited at least one reference assigned to the group

C1. The article of Gubbins et al. [22] cited the largest number of

references belonging to C1 group (9 citations); it presents

a stochastic model of fungicide resistance evolution that quotes

six models of antibiotic resistance and three general models from

population biology.

DISCUSSION
The absence of interconnection between scientists modelling the

evolution of resistance has already been described [23,3]. Peck [23]

Table 2. Contingency table crossing for the authorship and
citation groups.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Authorship Network Citation Network Total

C1 Group C2 Group Isolated Articles

A1 Group 45 0 0 45

A2 Group 2 13 0 15

Small Groups 58 19 1 78

Isolated Articles 33 12 4 49

Total 138 44 5 187

The independence of each network structure was significantly rejected (Fisher’s
exact test, p,1025).
doi:10.1371/journal.pone.0001275.t002..
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Figure 3. Hierarchical tree showing the structure of the citation network calculated using the ‘edge betweenness’ algorithm [13]. Due to space
constraints, only the tree leaves corresponding to articles are depicted. Tree branches correspond to the splits of the network. The very first split
produced two clusters called C1 and C2. Subsequent splits revealed divisions between seven subgroups within the C1 group. Tree leaf colours
indicate the type of pesticide or drug considered by the articles.
doi:10.1371/journal.pone.0001275.g003
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titled his article ‘‘Antibiotic and insecticide resistance modeling—is it time to

start talking?’’, illustrating the lack of interdisciplinary work in the field.

It was indeed time to talk and there was much to be gained by cross-

fertilization between the disciplines. Unfortunately, the article of

Peck [23] was to a large extent ignored until 2004 and has not been

cited more than six times. This illustrates surprisingly limited interest

in this key article — note that other articles published in 2001 in the

same journal have been cited (by July 2007 and according to the

Web of Science) 17.2 times on average.

Although most people working on the evolution of resistance

would agree that there is indeed some compartmentalization in the

field, a thorough analysis of how the scientific community is

structured had never been conducted, and the factors structuring it

had never been identified. By contrasting the biology and genetics

of insects and bacteria, Peck [23] restricted his analysis to

antibiotics and insecticides ignoring models devoted to other

pesticides or drugs. More importantly, the goal of Peck’s analysis

was not to provide any quantitative measure of the isolation

between groups of scientists but to alert the scientific community.

He assumed that the community of scientists modelling resistance

was significantly structured according to their interest in pesticides

or drugs–in his case insecticides and antibiotics. By contrast, our

aim was to test for the structure of the community using network

analysis and including all major classes of drugs and pesticides.

Using a database of 187 articles modelling the evolution of

resistance to all the various classes of pesticides and drugs, we

performed network analyses with no a priori knowledge of view

about the factors structuring the community.

Both authorship and citation networks identified two major

scientific groups working in parallel in the field of resistance

evolution modelling. One group is interested in resistance

evolution in agricultural settings (i.e., crop or stock pests or causal

agents of disease). It mainly uses a population genetics approach to

model the evolution of resistance to insecticidal proteins,

insecticides, herbicides, antihelminthic drugs or miticides. By

contrast, the other group is interested in resistance evolution in

human parasites and predominantly uses epidemiological models

to study the evolution of resistance to antibiotic and antiviral

drugs. Moreover, our analyses suggest that there is a small

scientific group focusing on resistance to antimalarial drugs, and

which is only weakly connected to the two major groups. Our

analysis of cited references provides strong evidence that each of

the two large communities establishes its research in a different set

of literature and has its own keystone references. This is well

illustrated by the very low percentage (less than 5.6%) of cited

references shared by the two communities. The division is even

clearer in the structure of collaborations between authors. We

identified two large collaborative groups of scientists–one that

explores resistance of human parasites and the other that works on

insecticide resistance in insect crop pests–that have been coexisting

without ever coming together to produce common publications.

Although robust and reliable, this result needs to be qualified.

Indeed, there is information flow between the two citation groups

although it is low volume. Some of the few references that are cross

cited are general developments in the field of ecology and genetics,

and this finding indicates that some theoretical literature is shared

between citation groups. The articles of one group citing

references of the other group, included 50% of all articles

concerning antimalarial drug resistance models and 33% of the all

those addressing fungicide resistance models. The two articles

citing the largest number of references from the other group also

focused on fungicide [22] and antimalarial drugs [15]. This is

consistent with the type of modelling approach used for work on

antimalarial drugs and fungicides. For antimalarial drugs re-

sistance models, epidemiological approaches, typical of human

parasite modelling, were used as frequently as population genetics

approaches that are typical of agricultural pest modelling [24].

Fungicide models used epidemiological approaches leading the

authors to cite literature of the C2 group. In these contexts, the

modelling approach compartment might be preferred by the

authors because the variable of interest is likely to be symptoms as

perceived on the whole plant rather than the cryptic presence of

individuals which are not countable. Indeed, the division of this

scientific community into two major groups–one affiliated to

agriculture and the other to medicine– is not perfectly correlated

with the kind of modelling approach used: about 24% of models of

C1 group are not population genetics models whereas 4.5% of the

articles belonging to C2 group presented population genetics

models. This would be expected to generate the need to cross cite

references which is clearly not the case.

The compartmentalization between the two groups appears

asymmetrical: modelling approaches, geographic origins and

disciplines of the first authors are much more diverse for the

community of researchers working in medicine than in agriculture

(Table 1). In addition, the most cited journals quoted by the

authorship group working on human parasite resistance are

generalist journals and are also cited by the other group. The

reverse is does not apply: the group working on agricultural pest

resistance cites specialised (entomology or phytopathology) journals

Table 3. The five most cited references and journals within the
citation groups C1 and C2 and number of citations of these
references/journals in each group.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Citation
Group Most Cited References

Quotation
Number

C1 C2

C1 Comins J. theor. Biol. (1977) 64, 177–197 35 0

Tabashnik et al. Env. Entomol. (1982) 11, 1137–1144 31 0

Georghiou and Taylor J. Econ. Entomol . (1977) 70,
319–323

26 0

Roush and McKenzie Annu. Rev. Entomol. (1987) 32,
361–380

23 0

Gould. Annu. Rev. Entomol. (1998) 43, 701–726 22 0

C2 Anderson and May (1991) Oxford University Press 4 18

Bonhoeffer et al. Proc. Natl. Acad. Sci. USA (1997) 94,
12106–12111

1 12

Blower et al. Science (1996) 273, 497–500 1 11

Levin et al. Clinic. Inf. Dis. (1997) 24, S9–S16 0 10

Wei et al. Nature (1995) 373, 117–122 0 10

Most Cited Journals

C1 Journal of Economic Entomology 614 0

Environmental Entomology 211 0

Annual Review of Entomology 119 0

Phytopathology 108 10

Pesticide Science/Pest Management Science 99 0

C2 Science 84 97

Proceedings of the National Academy of Sciences of the
USA

74 92

Antimicrobial Agents Chemotherapy 0 79

Nature 53 65

New England Journal of Medecine 2 62

doi:10.1371/journal.pone.0001275.t003..
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that are not cited by the other group. For these reasons of

‘generalism’, ‘diversity’, and to a lesser degree ‘youth’, we believe

that researchers working on the evolution of resistance in the medical

sciences may be both more responsive to progress in other scientific

fields and better disposed to multidisciplinary research.

The division of research on the evolution of resistance into two

communities has, as stated above, already been reported [23,3].

Hastings [3] suggested that the modelling approach–epidemiology

versus population genetics–and the reproduction mode of the

organism under study structured the community: epidemiology

models being used for asexual species (virus, bacteria, fungi)

whereas population genetics models apply to sexually reproducing

pathogens and pests. Peck [23] asserted that ‘‘the lack of

interdisciplinary work in resistance modelling seems to be that bacterial genetics

differ substantially from the genetics of diploid organisms such as insects and

mites’’. Our analysis of a large panel of articles suggests that the

modelling approach is not the factor that best structured the

community. This was clearly illustrated by the literature for

antimalarial drugs and fungicides, and by the numerous population

genetics models developed to analyse evolutionary outcomes in

bacteria [18,25–27]. Moreover, explanations based on differences

in reproductive modes or genetics are similarly not entirely

satisfactory because large variations in recombination rates in

insects (e.g. in aphids [28] as in bacteria [29]), and because the

models of population genetics of haploid and diploid organisms are

very similar. For instance, the Wright-Fisher and the coalescent

models are nearly the same for both haploids and diploids [30].

Finally, contrary to previous suggestions by Hastings [3] and

Peck [23], we think that the two separate groups have developed

a the result of the more traditional division between research in

agriculture (and related sciences) and medical sciences. The

coexistence of two communities in the field of resistance evolution

modelling–one specialized on agricultural pests or diseases, the

other on human parasites–may not have initially arisen from the

need to use different modelling approaches because of biological

differences in target organisms. Moreover, even if this were the

case, the methodology used for modelling should not, per se,

preclude cross citation and scientific exchange. Given the almost

complete absence of citation of the keystone articles of one

community by the other community, we suggest that the division

corresponds to the independent development of scientific groups

around different leaders. Our view is that the article by Comins

[20] may have given rise to a lineage of population genetics models

on insect pests whereas the book by Anderson and May [21] may

have initiated the proliferation of epidemiological models on

human diseases. Merging of the two lineages may have been

inhibited by the applied nature of research on the evolution of

resistance: modelling the evolution of resistance evolution is driven

by practical problems encountered by farmers or medical

practitioners. Therefore, scientific exchanges may have occurred

preferentially between scientists working with the same practical

issues, and addressing the same audience. We also think that the

current compartmentalization is due to the absence, when this

scientific field first emerged, of major contributions by founders

presenting general models of resistance evolution.

We fear that this historical, field-oriented division impedes the

progress of research at a time when the development of new

pesticides and drugs is a growing problem. Possibly, the subdivision

into two communities has been beneficial by favouring the

emergence of different models over mimicking those already

developed in the other community. Hence, although the community

is clearly divided into two groups, we now need to investigate

whether or not they arrive at similar conclusions and management

solutions. These issues will be addressed in a subsequent paper.

MATERIALS AND METHODS

Construction of the database
We established a database of articles presenting models (mathe-

matical models or computer simulations) of the evolution of

resistance to the most common classes of pesticides–insecticides,

fungicides, herbicides, miticides and insecticidal proteins such as

Bacillus toxins–and drugs–antibiotic, antiviral, antimalarial and

antihelmintic drugs. We used a three-step process to select relevant

articles without using any subjective a priori knowledge of the

relevant literature. First, we selected in the Web of Science (1992–

2006) database the four most cited articles concerning models

(mathematical models or computer simulations) to study the

evolution of resistance to each of the six following pesticides and

drugs: insecticides, herbicides, fungicides, insecticidal proteins and

antibiotic and antiviral drugs. We used the search formula

TS = (model* AND resistan* AND X), with X being one of the

six pesticides or drugs under consideration. The most cited articles

were then checked to verify their relevance. This resulted in

a kernel of 24 ‘core articles’. The second step involved a search in

the CABs 1973–2006, Current Contents 1998–2006 and Medline

1950–2006. The aim was to establish, using a trial and error

method, a single search formula detecting the smallest set of

articles that included at least all the 24 ‘core articles’. The final

‘‘formula’’ used–on September 1st 2006–for the search in the three

bibliographic databases is given in Table S11. The third step was

to reduce the dataset by removing all irrelevant articles: the

summary and keywords of each article were carefully and

independently read by two of us to verify that the article dealt

with a mathematical model or a computer simulation of the

temporal evolution of resistance in response to selective pressures

induced by a pesticide or a drug. The final database consisted of

a total of 187 articles (see the results section; the references of these

articles are given in Table S1).

For each of the selected articles, a reading grid was completed with

details of the type of drug or pesticide (insecticides, fungicides,

herbicides, miticides, insecticidal proteins, and antibiotic, antiviral,

antimalarial and antihelmintic drugs), the kind of target organism

(farm pest and disease versus human parasite), the first author

affiliations (geographical location of work and scientific discipline as

indicated by the institution department). Each article was also

classified according to the modelling approach used, according to

Levin [27,31]: the population genetics approach considers the change

in the frequencies of resistant and sensitive individuals as function of

pesticide or drug use; whereas the epidemiological approach refers to

the compartment model tradition of mathematical epidemiology of

parasites as described by Anderson and May [21]. Models that could

not be assigned to the ‘‘population genetics model’’ nor to the

‘‘epidemiological model’’ were classified as ‘‘other’’.

Network construction
All author names and all cited references in each article of the

database were recorded. These data were used to build two

bipartite undirected networks (R igraph package, graph.adjacency

function [32,33]). The edges of the first network linked articles to

their authors. This network, named the authorship network, had

508 nodes representing 187 articles connected with 321 authors.

The edges of the second network linked articles to their

bibliographic references. This network, named the citation

network, had 4,387 nodes representing 187 articles connected

with 4,154 cited references. The aim was to group articles

according to their similarity in authorship or citations, so we

removed all the authors who had published only once and all the

references cited only once. Articles which were no longer linked to
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any author or any reference were removed from the networks and

were classified as ‘‘isolated articles’’. This led to a simplified

authorship network of 138 articles connected with 87 authors and

a simplified citation network of 182 articles connected with 857

citations. These networks had 260 and 2,943 edges, respectively.

Detection of connected components and clusters
We first identified the connected components of the two networks

and measured their sizes using the clusters function of the R igraph

package [32,33]. The citation network was found to be fully

connected, so the clustering algorithm proposed by Girvan and

Newman [13] was used to analyse its structure. This divisive

algorithm selects the edges of the network to be cut based on their

‘edge betweenness’, a generalization of the centrality betweenness,

originally defined for graph vertices [34,35]. Edge betweenness is

(roughly) equal to the number of shortest paths linking all pairs of

vertices going through an edge. It was calculated using the

edge.betweenness function of the R igraph package [32,33]. As

detailed by Girvan and Newman [13], if a network contains

clusters that are loosely connected by few edges, the edges

connecting these clusters have a high betweenness because all

shortest paths between vertices of different clusters must pass

through them. At a given stage, edges with the highest

betweenness were therefore removed from the citation network

and the betweenness for all the remaining edges was recalculated.

This sequence was repeated until separation of clusters. Each

cluster was then split in its turn, starting with the largest. The

algorithm was run until no edge remained. The nested hierarchy

of clusters was converted into a tree format using the as.phylo.-

formula function of the R ape package [33,36], and is represented

as an unrooted radial tree with TreeView [37].

The clustering algorithm was originally designed for unipartite

networks [13], so we also applied it to the unipartite projection of the

citation network on articles. This projection yielded to a network

having 182 nodes representing the 182 articles of the citation

network. Two articles were connected with each other if they shared

at least one reference. A total of 3,106 edges linked together the

articles. We checked that the major divisions of this unipartite

network were the same as those of the bipartite citation network.

Finally, we constructed the network with the 187 database

articles as vertices and in which two articles were linked together if

one cited the other. We found that sixteen articles were not cited

by any other article of the database and did not cite any other

article. Thus, they were not linked to any other article in the

network. They were removed and classified as ‘‘isolated’’ articles.

This led to a simplified, fully connected, unipartite network with

171 nodes and 590 edges, which was called the unipartite co-

citation network. The information contained in this network was

complementary to that of the bipartite citation network. Indeed, in

the bipartite citation network, the common references through

which the articles were linked were of various types: they were

general reviews or books on resistance evolution, theoretical

articles on resistance evolution, or specific studies on the biology of

target organisms. By contrast, in the unipartite co-citation

network, links corresponded to citations between theoretical

studies only because our database was cleared to include only

models of resistance evolution. The bipartite citation network

therefore provides a general, exhaustive picture of knowledge flow

between the 187 database articles, whereas the unipartite co-

citation network gives an insight into the flow of theoretical

knowledge only. We studied the architecture of the unipartite co-

citation network with the clustering algorithm and compared it

with that of the bipartite citation network.

Statistical validation of clusters
The clusters obtained by clustering algorithm analysis with the

bipartite citation network were statistically validated by testing

whether element similarity–i.e. article similarity according to their

cited references and reference similarity according to their source

articles–was significantly higher within than among clusters. For

this, we used the multiresponse permutation procedure (MRPP),

a non-parametric method designed for testing differences among

a priori defined groups [38]. The MRPP statistic d is the weighted

within-group mean of the pairwise dissimilarities among their

elements. Using the method of Prado et al. [39], dissimilarity was

calculated here as a Jaccard distance and group size was taken for

group weighting. The permutation algorithm included in the

mrpp function of the R vegan package [33,40] calculates the

expected statistics E(d) if groups were assembled at random. The

within-group chance-corrected agreement (A), defined as 1-d/E(d),

has a maximum value of 1 when there is no dissimilarity

among elements of any groups. The p-value is the probability of

obtaining by chance a value of A equal or larger than the observed

value.

SUPPORTING INFORMATION

Table S1 References of the 187 articles included in the database

Found at: doi:10.1371/journal.pone.0001275.s001 (0.09 MB

PDF)

Table S2 Number of articles falling into the various descriptive

categories for each group of the authorship network

Found at: doi:10.1371/journal.pone.0001275.s002 (0.03 MB

PDF)

Table S3 Multiresponse permutation procedure (MRPP) anal-

ysis of group dissimilarities showing mean citation distance

between articles and mean source articles distance between

citations in each citation group

Found at: doi:10.1371/journal.pone.0001275.s003 (0.02 MB

PDF)

Table S4 Contingency table crossing for citation groups

obtained by applying the clustering algorithm to the bipartite

citation and to the unipartite article networks

Found at: doi:10.1371/journal.pone.0001275.s004 (0.01 MB

PDF)

Table S5 Contingency table crossing for citation groups

obtained by applying the clustering algorithm to the bipartite

citation and to the unipartite co-citation networks

Found at: doi:10.1371/journal.pone.0001275.s005 (0.01 MB

PDF)

Table S6 Number of articles falling into the various descriptive

categories for each group of the citation network

Found at: doi:10.1371/journal.pone.0001275.s006 (0.03 MB

PDF)

Table S7 Multiresponse permutation procedure (MRPP) anal-

ysis of group dissimilarities showing mean citation distance

between articles and mean source article distance between

citations in each citation group

Found at: doi:10.1371/journal.pone.0001275.s007 (0.02 MB

PDF)

Table S8 Number of articles focusing on the different types of

drug or pesticide for each subgroup of the C1 cluster

Found at: doi:10.1371/journal.pone.0001275.s008 (0.02 MB

PDF)
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Table S9 List of the 48 references cited by articles belonging to

the C1 group and articles belonging to the C2 group

Found at: doi:10.1371/journal.pone.0001275.s009 (0.02 MB

PDF)

Table S10 Characteristics of the 28 articles of one group that

cited references of the other group

Found at: doi:10.1371/journal.pone.0001275.s010 (0.02 MB

PDF)

Table S11 Formulae used to search for relevant articles

describing models of the evolution of resistance to pesticides and

drugs within the CABs (1973–2006), Current Contents (1998–

2006), and Medline (1950–2006) databases

Found at: doi:10.1371/journal.pone.0001275.s011 (0.02 MB

PDF)
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